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Abstract. The crossover exponents & ( r )  and & ( r )  for the non-linear resistor network are 
calculated to first order in E = 6 - d using the same formalism used by Harris. Our result 
supports the idea of the analytic continuation proposed by Harris in calculating the 
non-linear crossover exponent q5( r )  for the non-linear resistor network. 

Introduction 

Recently, the non-linear resistor network has been investigated by many authors [ 1-51. 
In this model a bond is present with probability p and is absent with probability 1 - p .  
Each bond is associated with a resistor (of conductance (+b)  which obeys the following 
equations: 

(1 .1 )  

(1.2) 

I x - d  [ V(x) - V(x')] = y  \ I x+x t l r - '  

g b [  v(x)  - v(x')]l v (x )  - v(xr)Is-' = Ir+x, 

(+b 

where V(x) is the voltage at site x, Ix+x, is the current in the bond flowing from site 
x to site x', r is the non-linear parameter and s = r - * .  

The conductivity exponent t (  I )  of the non-linear resistor network is defined as 

Z ( P )  - IP -Pel l ( r )  (1.3) 
near percolation threshold p c  for a given r, where Z ( p )  is the bulk conductivity of the 
sample for the non-linear resistor network. It has been shown [ 13 using the node-link 
picture [6,7] that 

t ( r ) = ( d - l - r - ' ) ~ ~ + r - ' C $ ( r )  (1.4) 
where vp is the exponent for the correlation length and +( r )  is the non-linear crossover 
exponent governing the scaling behaviour of the two-point resistance R ( x ,  x'): 

(1.5) 

where [ lay indicates a conditional average, subject to x and x r  being in the same cluster. 
For the linear resistor networks, there is [%lo] an infinite sequence of crossover 

exponents { c $ ~ }  needed to completely describe the probability distribution of the 
two-point resistance R ( x ,  x'). Similarly, in the non-linear resistor network, an infinite 
number of crossover exponents { C$k( r ) }  are needed to describe the two-point non-linear 
resistance R(x, x'), where + ( r )  is the first member of { + b k ( r ) } .  

[ R(x ,  x')lav - /x  - x'j + ( r ) ' v P  
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Most recently, Harris [ 113 has calculated this crossover exponent c$(  r )  using the 
renormalisation group &-expansion method. As Harris pointed out, although his 
calculations satisfy several non-trivial self-consistency checks and reproduce known 
results for r + 0 and r + CO, they involve an analytic continuation whose status is not 
beyond question. Accordingly, calculation of the exponent &( r )  associated with w2 
(which will be defined in 0 2) would be useful to further test the method of analytic 
continuation used there. This is the main purpose of this work: to calculate the 
crossover exponents c$2( r )  and c$3(r) to first order in E ,  and to test this method of 
analytic continuation. 

2. Field theory 

As discussed in [ 101 the randomly diluted resistor network can be treated by Stephen's 
formalism [ 121. This formalism has been extended to the non-linear resistor network 
by Harris [ll]. In this paper, we will use a continuum field theory for the model 
derived by Harris. Since the field theory is quite complex, and has been described in 
detail in the paper by Harris, we will give a brief review of the derivation. The 
Hamiltonian of the system is 

1 
H({ V}) = - r7bl V(X) -- v(x')Is+l 

(x,x') s + 1 

where the summation is over the nearest-neighbour sites and b is the bond connecting 
site x and x'. 

The replicated effective Hamiltonian He, is defined as 

or 

La=1 J av 

where [ Iav denotes the average over the random configurations, a = 1 , 2 , .  . . , n labels 
replicas and we have introduced n replicas to facilitate the random average. 

Now we consider the correlation function G(x, x', A )  which can be defined as [ 1 I]  

G(x, x', A )  = DV exp[-H({ V})] exp{iA[ V(x) - V(x')]} (2.4) J 
where D V  indicates an integration over all variables { V(x)}. 

In order that the dominant contribution of (2.4) is determined by ( l . l ) ,  we should 
continue A into large imaginary values, i.e. A =iAo with A o + c o .  So the correlation 
function becomes 

A ~ ~ ~ R ( x , x ' ) / ( r + l ) ) ]  av A,,,,+CO (2.5) 

where A, = iA,,o. When A. is near the positive real axis and 

lAA+11/r7g >> 1 

nIA&+'l/r7;<< 1 

( 2 . 6 ~ )  

(2.6b) 
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we have 

l+R(x ,  x') (-iAa)r+l/(r+ l))] 
OL ar 

(2.7) 

where v(x ,  x') is one if x and x' are in the same cluster and zero otherwise. Here we 
have assumed that all the present bonds have the same conductance uo in bond dilution. 
Therefore, the non-linear resistor network can be formulated as a crossover from the 
percolation problem as for the linear case [lo, 121. 

To get a field theory we transform (2.3) into its Fourier components. We find that 

where A is the Fourier parameter, +,,(x) is the order parameter defined by 

GA(x) = exp[iA * V(X)] (2.9) 
and 

1 
z [ r ( A )  - 11 

BA - 
where z is the coordination number of the lattice. Near criticality 

a 
r ( A )  = r (0 )  - 2 wk ( c (-iAOL)r+l 

k = l  

(2.10) 

(2.11) 

= r (0 )  + & ( A )  

where the wk are constants, wk - ( v ; ) - ( ~ ~ - ' )  and r ( 0 ) - p - p , .  The exponent & ( r )  is 
the crossover exponent associated with wk in (2.11). 

3. E expansion 

In this section we will use the momentum-shell renormalisation group recursion relation 
[ 131 to calculate the non-linear crossover exponent for the non-linear resistor network. 
The recursion relation for r ( A )  can be obtained by integrating out degrees of freedom 
with wavenumber in the annulus b- 'A < q < A = 1, where A is a cutoff determined by 
the lattice constant a such that a h -  1, and rescaling the field via + ( q / b )  + 
b ( d - 2 + 7 7 ) / 2  $ ( q ) ,  where + ( q )  is the order parameter field in Fourier space. Eliminating 
an infinitesimal shell at each iteration with b = e", we obtain the recursion relation as 
[111 

(3. la)  

where [14] 

T p  = -&/21 g = 2 4 7  vp = 5 + 5 ~ / 8 4  (3.lb) 

and Z(A)  is given by 

Z(A) = -2G(A)G(O)+%(A) (3.2) 
where G(A) is the mean field propagator evaluated at q2 = 1: 

G(A)-' = 1 + r (0 )  + & ( A )  (3.3) 
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and 

J W a n g  

% ( A ) = c  G ( A - T ) G ( T )  
T 

= G($A - 7 ) ~ ( $ ~  + 7). 
7 

(3.4) 

(3.5) 

For the non-linear resistor network, we will consider the analytic continuation of 
the recursion relation (3.1~) for A in the regime described by (2.6). In order to calculate 
+ k ( r ) ,  we expand (3.5) in powers of w k :  

x G;(;A + 7) G,($A - 7 )  

where 

G;'(A) = 1 - W ,  (--A,)?+'. 
01 

Note that 

G , ~ ( A )  =- lom U'-' du exp[-uG;'(A)] 
( k - l ) !  

- -L lom U'-' du exp 
( k - I ) !  

So we obtain 

= 2 w k  lom U du e-" lom dv e-' u ( - h  

where we have dropped A in 5 for notational convenience. Now we change the variable 
from r, to p,, i.e. 

(3.9) 

(3.10) 

A = w1 [U( -ih, v s  +ip.>'" + v( -iA, u s  -ip.)"'] (3.11) 
a 
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and 

(3.12) 

Since A, is large (or w ~ A A + ~  is large) we can expand A in powers of l l h ,  : 
ips( u s  + u s ) )  r + l  ( ipo( (us  + u s ) )  "'1 

+ u s  1- 
a -iA,vs -&us ( U S  + VJ)'+l A =  w1 (-iAa)r+l uv [ , ( l +  

uv 
= w1 ( - iAo() r+l  s r -  w1 c (-iL)'-'PLZ,Fo (3.13) 

a ( u " + v  ) a 

where 

(3.14) F~ = f r (  r + 1 )  ( u s  + v s ) 2 - r E  

usvs 

so that eA has a Gaussian form. Similarly, we have 

( 3 . 1 5 )  

3.1. Calculation for &(r) 

The procedure for calculating &(i) is very similar to that for obtaining the linear 
exponent &. Setting k = 2, we expand (3.15) and keep only even powers of pa because 
of the Gaussian form of eA. It is easy to show that p4  or higher-order terms will not 
contribute to c$*(r) in the scaling region. We thus have 

B2 = By) + B y  + B(3) 2 

where 

and 

Substituting (3.14) and (3.15) into (3.10) we obtain 

( U S  + US)' 5, = 2w2 JOm U du e-" Iom dv e-' exp 

x 5 Dp, 

Before calculating 41~(  r ) ,  we make the following expansion in (3.19): 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 
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We will keep the correct term to get the scaling form w 2 [ Z a  (-&) r + 1 ] 2  in the calculation 
below. We first calculate the contribution from Bill. Note that By' does not depend 
on p, and I Dp,  e~p[-aZ, ( - iA, ) ' -~p~]  - 1 + nO( l ) ,  where a is a constant. Keeping 
the first term in (3.20), we obtain 

2 

= w2 (E a ( -iA,)r+l) C("( r )  (3.21) 

where 

The contribution from By' can be calculated as follows. 
From (3.17) and (3.19), we have 

since 

(3.22) 

(3.23) 

(3.24) 

We substitute (3.24) into (3.23) and, in order to cancel w1 in (3.24), we keep the second 
term in the expansion (3.20). Therefore we may write 5i2) as 

2 i 2 ' = - w 2 ( ; ( - i A , ) r + 1 ) 2 ~ o m u  due- '  lomdve-'- 2( r + 1 )  
r ( u s +  

= w 2 ( ;  (-iA,)ril)2C(2'(r) 

where 

The contribution from By' can be calculated as follows, 
From (3.24) one can see that 

Hence Bi3' does not contribute to &(r) .  
From (2.11), (3 .1) ,  (3.21) and (3.26) we have 

(3.25) 

(3.26) 

w2 
-- 4 2 ( r )  - (2 - 7 ) w 2  -4g[2+ C2( r ) ]  w2 = - d w2 

d l  VP 
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or 

where 
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(3.27) 

(3.28) 

The calculation of 43( r )  is similar to that of 42( r). Here we should expand B3 to 
fourth order in pa, and keep the proper term in (3.20) to get the correct scaling form 
w3[Z, (-ih,)'+'I3. We obtain 

43(r) = 1 + i w 3 ( r )  (3.29) 

where 

3( r+1)  
r (1 + y)"r( 1 - y)'/'+- 2r (1 - Y ) ~ " ) .  (3.30) 

In principle, $bk( r)  for k > 3 can also be calculated in the same way. Now we check 

(i) r-, 1: we obtain C2(1) = 0 and C3(l) = -A which agrees with +k for the linear 

(ii) r +  00: we have 4 2 ( ~ )  = 43(co) = 1, which is expected [2, 151. 
Finally, we note that for the limit r + 0, which corresponds to the exponent of the 

chemical length [2,11], we obtain C2(0) = C3(0)  = i, which provides strong evidence 
that there is not a hierarchy of exponents for the chemical length. 

In summary, we have calculated the non-linear crossover exponents 4 ~ ~ ( r )  and 
b3(r)  which provide a useful test for the method of analytic continuation proposed 
by Harris in calculating the non-linear crossover exponent 4(  r )  for the non-linear 
resistor network. 

several limits of r. 

resistor network [ 101. 
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