A family of crossover exponents for the nonlinear resistor network

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 22219
(http://iopscience.iop.org/0305-4470/22/2/011)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 07:01

Please note that terms and conditions apply.

A family of crossover exponents for the non-linear resistor network

Jian Wang
Department of Physics, University of Pennsylvania, Philadelphia, PA 19104, USA

Received 13 June 1988

Abstract

The crossover exponents $\phi_{2}(r)$ and $\phi_{3}(r)$ for the non-linear resistor network are calculated to first order in $\varepsilon=6-d$ using the same formalism used by Harris. Our result supports the idea of the analytic continuation proposed by Harris in calculating the non-linear crossover exponent $\phi(r)$ for the non-linear resistor network.

Introduction

Recently, the non-linear resistor network has been investigated by many authors [1-5]. In this model a bond is present with probability p and is absent with probability $1-p$. Each bond is associated with a resistor (of conductance σ_{b}) which obeys the following equations:

$$
\begin{align*}
& {\left[V(x)-V\left(x^{\prime}\right)\right]=\frac{I_{x \rightarrow x^{\prime}}}{\sigma_{b}^{r}}\left|I_{x \rightarrow x^{\prime}}\right|^{r-1}} \tag{1.1}\\
& \sigma_{b}\left[V(x)-V\left(x^{\prime}\right)\right]\left|V(x)-V\left(x^{\prime}\right)\right|^{s-1}=I_{x \rightarrow x^{\prime}} \tag{1.2}
\end{align*}
$$

where $V(x)$ is the voltage at site $x, I_{x \rightarrow x^{\prime}}$ is the current in the bond flowing from site \boldsymbol{x} to site $\boldsymbol{x}^{\prime}, r$ is the non-linear parameter and $s=r^{-1}$.

The conductivity exponent $t(r)$ of the non-linear resistor network is defined as

$$
\begin{equation*}
\Sigma(p) \sim\left|p-p_{\mathrm{c}}\right|^{t(r)} \tag{1.3}
\end{equation*}
$$

near percolation threshold p_{c} for a given r, where $\Sigma(p)$ is the bulk conductivity of the sample for the non-linear resistor network. It has been shown [1] using the node-link picture $[6,7]$ that

$$
\begin{equation*}
t(r)=\left(d-1-r^{-1}\right) \nu_{p}+r^{-1} \phi(r) \tag{1.4}
\end{equation*}
$$

where ν_{p} is the exponent for the correlation length and $\phi(r)$ is the non-linear crossover exponent governing the scaling behaviour of the two-point resistance $R\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$:

$$
\begin{equation*}
\left[R\left(x, x^{\prime}\right)\right]_{\mathrm{av}} \sim\left|x-x^{\prime}\right|^{\phi(r) / \nu_{p}} \tag{1.5}
\end{equation*}
$$

where [$]_{\mathrm{av}}$ indicates a conditional average, subject to \boldsymbol{x} and \boldsymbol{x}^{\prime} being in the same cluster.
For the linear resistor networks, there is [8-10] an infinite sequence of crossover exponents $\left\{\phi_{k}\right\}$ needed to completely describe the probability distribution of the two-point resistance $R\left(x, x^{\prime}\right)$. Similarly, in the non-linear resistor network, an infinite number of crossover exponents $\left\{\phi_{k}(r)\right\}$ are needed to describe the two-point non-linear resistance $R\left(x, x^{\prime}\right)$, where $\phi(r)$ is the first member of $\left\{\phi_{k}(r)\right\}$.

Most recently, Harris [11] has calculated this crossover exponent $\phi(r)$ using the renormalisation group ε-expansion method. As Harris pointed out, although his calculations satisfy several non-trivial self-consistency checks and reproduce known results for $r \rightarrow 0$ and $r \rightarrow \infty$, they involve an analytic continuation whose status is not beyond question. Accordingly, calculation of the exponent $\phi_{2}(r)$ associated with w_{2} (which will be defined in § 2) would be useful to further test the method of analytic continuation used there. This is the main purpose of this work: to calculate the crossover exponents $\phi_{2}(r)$ and $\phi_{3}(r)$ to first order in ε, and to test this method of analytic continuation.

2. Field theory

As discussed in [10] the randomly diluted resistor network can be treated by Stephen's formalism [12]. This formalism has been extended to the non-linear resistor network by Harris [11]. In this paper, we will use a continuum field theory for the model derived by Harris. Since the field theory is quite complex, and has been described in detail in the paper by Harris, we will give a brief review of the derivation. The Hamiltonian of the system is

$$
\begin{equation*}
H(\{V\})=\sum_{\left\langle x, x^{\prime}\right\rangle} \frac{1}{s+1} \sigma_{b}\left|V(x)--V\left(x^{\prime}\right)\right|^{s+1} \tag{2.1}
\end{equation*}
$$

where the summation is over the nearest-neighbour sites and b is the bond connecting site \boldsymbol{x} and \boldsymbol{x}^{\prime}.

The replicated effective Hamiltonian $H_{\text {eff }}$ is defined as

$$
\begin{equation*}
\exp \left(-H_{\mathrm{eff}}\right)=\left[\prod_{\alpha=1}^{n} \exp \left[-H\left(\left\{V_{\alpha}\right\}\right)\right]\right]_{\mathrm{av}} \tag{2.2}
\end{equation*}
$$

or

$$
\begin{equation*}
H_{\mathrm{eff}}=-\ln \left[\prod_{\alpha=1}^{n} \exp (-H)\right]_{\mathrm{av}} \tag{2.3}
\end{equation*}
$$

where [$]_{\text {av }}$ denotes the average over the random configurations, $\alpha=1,2, \ldots, n$ labels replicas and we have introduced n replicas to facilitate the random average.

Now we consider the correlation function $G\left(x, x^{\prime}, \lambda\right)$ which can be defined as [11]

$$
\begin{equation*}
G\left(x, x^{\prime}, \lambda\right) \equiv \int D V \exp [-H(\{V\})] \exp \left\{\mathrm{i} \lambda\left[V(x)-V\left(x^{\prime}\right)\right]\right\} \tag{2.4}
\end{equation*}
$$

where $D V$ indicates an integration over all variables $\{V(x)\}$.
In order that the dominant contribution of (2.4) is determined by (1.1), we should continue λ into large imaginary values, i.e. $\lambda=\mathrm{i} \lambda_{0}$ with $\lambda_{0} \rightarrow \infty$. So the correlation function becomes

$$
\begin{equation*}
G\left(x, x^{\prime}, \lambda\right)=\left[\exp \left(\prod_{\alpha=1}^{n} \lambda_{\alpha, 0}^{r+1} R\left(x, x^{\prime}\right) /(r+1)\right)\right]_{\mathrm{av}} \quad \lambda_{\alpha, 0} \rightarrow \infty \tag{2.5}
\end{equation*}
$$

where $\lambda_{\alpha}=\mathrm{i} \lambda_{\alpha, 0}$. When λ_{0} is near the positive real axis and

$$
\begin{align*}
& \left|\lambda_{0}^{r+1}\right| / \sigma_{0}^{r} \gg 1 \tag{2.6a}\\
& n\left|\lambda_{0}^{r+1}\right| / \sigma_{0}^{r} \ll 1 \tag{2.6b}
\end{align*}
$$

we have

$$
\begin{equation*}
G\left(x, x^{\prime}, \lambda\right)=\left[\nu\left(x, x^{\prime}\right)\left(1+R\left(x, x^{\prime}\right) \sum_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r+1} /(r+1)\right)\right]_{\mathrm{av}} \tag{2.7}
\end{equation*}
$$

where $\nu\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ is one if \boldsymbol{x} and \boldsymbol{x}^{\prime} are in the same cluster and zero otherwise. Here we have assumed that all the present bonds have the same conductance σ_{0} in bond dilution. Therefore, the non-linear resistor network can be formulated as a crossover from the percolation problem as for the linear case [10,12].

To get a field theory we transform (2.3) into its Fourier components. We find that

$$
\begin{equation*}
H_{\mathrm{eff}}=-\sum_{\left\langle x, x^{\prime}\right\rangle} \sum_{\lambda} B_{\lambda} \psi_{\lambda}(x) \psi_{-\lambda}\left(x^{\prime}\right) \tag{2.8}
\end{equation*}
$$

where $\boldsymbol{\lambda}$ is the Fourier parameter, $\psi_{\boldsymbol{\lambda}}(\boldsymbol{x})$ is the order parameter defined by

$$
\begin{equation*}
\psi_{\boldsymbol{\lambda}}(\boldsymbol{x})=\exp [\mathrm{i} \boldsymbol{\lambda} \cdot \boldsymbol{V}(\boldsymbol{x})] \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{\lambda} \sim \frac{1}{z[r(\boldsymbol{\lambda})-1]} \tag{2.10}
\end{equation*}
$$

where z is the coordination number of the lattice. Near criticality

$$
\begin{align*}
r(\boldsymbol{\lambda}) & =r(0)-\sum_{k=1}^{\infty} w_{k}\left(\sum_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r+1}\right)^{k} \tag{2.11}\\
& \equiv r(0)+\delta r(\boldsymbol{\lambda})
\end{align*}
$$

where the w_{k} are constants, $w_{k} \sim\left(\sigma_{0}^{r}\right)^{-(2 k-1)}$ and $r(0) \sim p-p_{\mathrm{c}}$. The exponent $\phi_{k}(r)$ is the crossover exponent associated with w_{k} in (2.11).

3. ε expansion

In this section we will use the momentum-shell renormalisation group recursion relation [13] to calculate the non-linear crossover exponent for the non-linear resistor network. The recursion relation for $r(\boldsymbol{\lambda})$ can be obtained by integrating out degrees of freedom with wavenumber in the annulus $b^{-1} \Lambda<q<\Lambda=1$, where Λ is a cutoff determined by the lattice constant a such that $a \Lambda \sim 1$, and rescaling the field via $\psi(\boldsymbol{q} / b) \rightarrow$ $b^{(d-2+\eta) / 2} \psi(\boldsymbol{q})$, where $\psi(\boldsymbol{q})$ is the order parameter field in Fourier space. Eliminating an infinitesimal shell at each iteration with $b=e^{\delta l}$, we obtain the recursion relation as [11]

$$
\begin{equation*}
\frac{\mathrm{d} r(\boldsymbol{\lambda})}{\mathrm{d} l}=\left(2-\eta_{p}\right) r(\boldsymbol{\lambda})-g \boldsymbol{\Sigma}(\boldsymbol{\lambda}) \tag{3.1a}
\end{equation*}
$$

where [14]

$$
\begin{equation*}
\eta_{p}=-\varepsilon / 21 \quad g=2 \varepsilon / 7 \quad \nu_{p}=\frac{1}{2}+5 \varepsilon / 84 \tag{3.1b}
\end{equation*}
$$

and $\boldsymbol{\Sigma}(\boldsymbol{\lambda})$ is given by

$$
\begin{equation*}
\Sigma(\lambda) \equiv-2 G(\lambda) G(0)+\tilde{\Sigma}(\lambda) \tag{3.2}
\end{equation*}
$$

where $G(\boldsymbol{\lambda})$ is the mean field propagator evaluated at $q^{2}=1$:

$$
\begin{equation*}
G(\boldsymbol{\lambda})^{-1}=1+r(0)+\delta r(\boldsymbol{\lambda}) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{align*}
\tilde{\Sigma}(\boldsymbol{\lambda}) & =\sum_{\tau} G(\boldsymbol{\lambda}-\boldsymbol{\tau}) G(\boldsymbol{\tau}) \tag{3.4}\\
& =\sum_{\tau} G\left(\frac{1}{2} \boldsymbol{\lambda}-\boldsymbol{\tau}\right) G\left(\frac{1}{2} \boldsymbol{\lambda}+\boldsymbol{\tau}\right) \tag{3.5}
\end{align*}
$$

For the non-linear resistor network, we will consider the analytic continuation of the recursion relation (3.1a) for $\boldsymbol{\lambda}$ in the regime described by (2.6). In order to calculate $\phi_{k}(r)$, we expand (3.5) in powers of w_{k} :

$$
\begin{align*}
\tilde{\boldsymbol{\Sigma}}(\boldsymbol{\lambda}) \sim \sum_{\tau}[& \left.G_{0}\left(\frac{1}{2} \boldsymbol{\lambda}+\boldsymbol{\tau}\right)+w_{k} G_{0}^{2}\left(\frac{1}{2} \boldsymbol{\lambda}+\boldsymbol{\tau}\right)\left(\sum_{\alpha}\left(-\frac{1}{2} \mathrm{i} \boldsymbol{\lambda}_{\alpha}+\mathrm{i} \tau_{\alpha}\right)^{r+1}\right)^{k}\right] \\
& \quad \times\left[G_{0}\left(\frac{1}{2} \boldsymbol{\lambda}-\boldsymbol{\tau}\right)+w_{k} G_{0}^{2}\left(\frac{1}{2} \boldsymbol{\lambda}-\boldsymbol{\tau}\right)\left(\sum_{\alpha}\left(-\frac{1}{2} \mathrm{i} \boldsymbol{\lambda}_{\alpha}-\mathrm{i} \tau_{\alpha}\right)^{r+1}\right)^{k}\right] \\
= & \sum_{\tau} G_{0}\left(\frac{1}{2} \boldsymbol{\lambda}+\boldsymbol{\tau}\right) G_{0}\left(\frac{1}{2} \boldsymbol{\lambda}-\boldsymbol{\tau}\right)+2 w_{k} \sum_{\tau}\left(\sum_{\alpha}\left(-\frac{1}{2} \mathrm{i} \lambda_{\alpha}+\mathrm{i} \tau_{\alpha}\right)^{r+1}\right)^{k} \\
& \times G_{0}^{2}\left(\frac{1}{2} \boldsymbol{\lambda}+\boldsymbol{\tau}\right) G_{0}\left(\frac{1}{2} \boldsymbol{\lambda}-\boldsymbol{\tau}\right) \tag{3.6}
\end{align*}
$$

where

$$
\begin{equation*}
G_{0}^{-1}(\boldsymbol{\lambda})=1-w_{1} \sum_{\alpha}\left(-\lambda_{\alpha}\right)^{r+1} \tag{3.7}
\end{equation*}
$$

Note that

$$
\begin{aligned}
G_{0}^{k}(\boldsymbol{\lambda})= & \frac{1}{(k-1)!} \int_{0}^{\infty} u^{k-1} \mathrm{~d} u \exp \left[-u G_{0}^{-1}(\boldsymbol{\lambda})\right] \\
& =\frac{1}{(k-1)!} \int_{0}^{\infty} u^{k-1} \mathrm{~d} u \exp \left[-u\left(1-w_{1} \sum_{\alpha}\left(-\lambda_{\alpha}\right)^{r+1}\right)\right]
\end{aligned}
$$

So we obtain

$$
\begin{gather*}
\tilde{\mathbf{\Sigma}}_{k}=2 w_{k} \int_{0}^{\infty} u \mathrm{~d} u \mathrm{e}^{-u} \int_{0}^{\infty} \mathrm{d} \nu \mathrm{e}^{-\nu} \sum_{\boldsymbol{\tau}} \exp \left[w _ { 1 } \sum _ { \alpha } \left(u\left(-\frac{1}{2} \mathrm{i} \lambda_{\alpha}+\mathrm{i} \tau_{\alpha}\right)^{r+1}\right.\right. \\
\left.\left.+\nu\left(-\frac{1}{2} \mathrm{i} \lambda_{\alpha}-\mathrm{i} \tau_{\alpha}\right)^{r+1}\right)\right]\left(\sum_{\alpha}\left(-\frac{1}{2} \mathrm{i} \lambda_{\alpha}+\mathrm{i} \tau_{\alpha}\right)^{r+1}\right)^{k} \tag{3.8}
\end{gather*}
$$

where we have dropped $\boldsymbol{\lambda}$ in $\tilde{\boldsymbol{\Sigma}}$ for notational convenience. Now we change the variable from τ_{α} to μ_{α}, i.e.

$$
\begin{equation*}
\tau_{\alpha}=\mu_{\alpha}+\frac{1}{2} \lambda_{\alpha} \frac{u^{s}-\nu^{s}}{u^{s}+\nu^{s}} \tag{3.9}
\end{equation*}
$$

where $s=r^{-1}$, so that

$$
\begin{equation*}
\tilde{\mathbf{\Sigma}}_{k}=2 w_{k} \int_{0}^{\infty} u \mathrm{~d} u \mathrm{e}^{-u} \int_{0}^{\infty} \mathrm{d} \nu \mathrm{e}^{-\nu} \sum_{\mu} \mathrm{e}^{A} B_{k} \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
A \equiv w_{1} \sum_{\alpha}\left[u\left(\frac{-\mathrm{i} \lambda_{\alpha}}{u^{s}+\nu^{s}} \nu^{s}+\mathrm{i} \mu_{\alpha}\right)^{r+1}+\nu\left(\frac{-\mathrm{i} \lambda_{\alpha}}{u^{s}+\nu^{s}} u^{s}-\mathrm{i} \mu_{\alpha}\right)^{r+1}\right] \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{k} \equiv\left[\sum_{\alpha}\left(\frac{-\mathrm{i} \lambda_{\alpha}}{u^{s}+\nu^{s}} \nu^{s}+\mathrm{i} \mu_{\alpha}\right)^{r+1}\right]^{k} . \tag{3.12}
\end{equation*}
$$

Since λ_{α} is large (or $w_{1} \lambda_{0}^{1+r}$ is large) we can expand A in powers of $1 / \lambda_{\alpha}$:

$$
\begin{gather*}
A=w_{1} \sum_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r+1} \frac{u \nu}{\left(u^{s}+\nu^{s}\right)^{r+1}}\left[\nu^{s}\left(1+\frac{\mathrm{i} \mu_{\alpha}\left(u^{s}+\nu^{s}\right)}{-\mathrm{i} \lambda_{\alpha} \nu^{s}}\right)^{r+1}+u^{s}\left(1-\frac{\mathrm{i} \mu_{\alpha}\left(u^{s}+\nu^{s}\right)}{-\mathrm{i} \lambda_{\alpha} u^{s}}\right)^{r+1}\right] \\
=w_{1} \sum_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r+1} \frac{u \nu}{\left(u^{s}+\nu^{s}\right)^{r}}-w_{1} \sum_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r-1} \mu_{\alpha}^{2} F_{0} \tag{3.13}
\end{gather*}
$$

where

$$
\begin{equation*}
F_{0} \equiv \frac{1}{2} r(r+1)\left(u^{s}+\nu^{s}\right)^{2-r} \frac{u \nu}{u^{s} \nu^{s}} \tag{3.14}
\end{equation*}
$$

so that e^{A} has a Gaussian form. Similarly, we have

$$
\begin{array}{r}
B_{k}=\left\{\sum _ { \alpha } (\frac { - \mathrm { i } \lambda _ { \alpha } } { u ^ { s } + \nu ^ { s } } \nu ^ { s }) ^ { r + 1 } \left[1+(r+1) \frac{\mathrm{i} \mu_{\alpha}}{-\mathrm{i} \lambda_{\alpha} \nu^{s}}\left(u^{s}+\nu^{s}\right)\right.\right. \\
\left.\left.+\frac{r(r+1)}{2}\left(\frac{\mathrm{i} \mu_{\alpha}}{-\mathrm{i} \lambda_{\alpha} \nu^{s}}\left(u^{s}+\nu^{s}\right)\right)^{2}+\ldots\right]\right\}^{k} . \tag{3.15}
\end{array}
$$

3.1. Calculation for $\phi_{2}(r)$

The procedure for calculating $\phi_{k}(r)$ is very similar to that for obtaining the linear exponent ϕ_{k}. Setting $k=2$, we expand (3.15) and keep only even powers of μ_{α} because of the Gaussian form of e^{A}. It is easy to show that μ^{4} or higher-order terms will not contribute to $\phi_{2}(r)$ in the scaling region. We thus have

$$
B_{2}=B_{2}^{(1)}+B_{2}^{(2)}+B_{2}^{(3)}
$$

where

$$
\begin{align*}
& B_{2}^{(1)} \equiv\left(\sum_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r+1}\right)^{2} \frac{\nu^{2 s+2}}{\left(u^{s}+\nu^{s}\right)^{2 r+2}} \tag{3.16}\\
& B_{2}^{(2)} \equiv-\left(\sum_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r} \mu_{\alpha}\right)^{2} \frac{(r+1)^{2} \nu^{2}}{\left(u^{s}+\nu^{s}\right)^{2 r}} \tag{3.17}
\end{align*}
$$

and

$$
\begin{equation*}
B_{2}^{(3)} \equiv-\left(\sum_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r+1}\right)\left(\sum_{\beta}\left(-\mathrm{i} \lambda_{\beta}\right)^{r-1} \mu_{\beta}^{2}\right) \frac{r(r+1) \nu^{2}}{\left(u^{s}+\nu^{s}\right)^{2 r}} . \tag{3.18}
\end{equation*}
$$

Substituting (3.14) and (3.15) into (3.10) we obtain
$\tilde{\boldsymbol{\Sigma}}_{2}=2 w_{2} \int_{0}^{\infty} u \mathrm{~d} u \mathrm{e}^{-u} \int_{0}^{\infty} \mathrm{d} \nu \mathrm{e}^{-\nu} \exp \left(w_{1} \sum_{\alpha}\left(-i \lambda_{\alpha}\right)^{r+1} \frac{u \nu}{\left(u^{s}+\nu^{s}\right)^{r}}\right)$

$$
\begin{equation*}
\times \int D \mu_{\alpha} \exp \left(-w_{1} F_{0} \sum_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r-1} \mu_{\alpha}^{2}\right)\left(B_{2}^{(1)}+B_{2}^{(2)}+B_{2}^{(3)}\right) . \tag{3.19}
\end{equation*}
$$

Before calculating $\phi_{2}(r)$, we make the following expansion in (3.19):
$\exp \left(w_{1} \sum_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r+1} \frac{u \nu}{\left(u^{s}+\nu^{s}\right)^{r}}\right)=1+w_{1} \sum_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r+1} \frac{u \nu}{\left(u^{s}+\nu^{s}\right)^{r}}+\ldots$

We will keep the correct term to get the scaling form $w_{2}\left[\Sigma_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r+1}\right]^{2}$ in the calculation below. We first calculate the contribution from $B_{2}^{(1)}$. Note that $B_{2}^{(1)}$ does not depend on μ_{α} and $\int D \mu_{\alpha} \exp \left[-a \Sigma_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r-1} \mu_{\alpha}^{2}\right] \sim 1+n \mathrm{O}(1)$, where a is a constant. Keeping the first term in (3.20), we obtain

$$
\begin{align*}
\tilde{\boldsymbol{\Sigma}}_{2}^{(1)} & =2 w_{2}\left(\sum_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r+1}\right)^{2} \int_{0}^{\infty} u \mathrm{~d} u \mathrm{e}^{-u} \int_{0}^{\infty} \mathrm{d} \nu \mathrm{e}^{-\nu} \frac{\nu^{2 s+2}}{\left(u^{s}+\nu^{s}\right)^{2 r+2}} \\
& =w_{2}\left(\sum_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r+1}\right)^{2} C^{(1)}(r) \tag{3.21}
\end{align*}
$$

where

$$
\begin{equation*}
C^{(1)}(r) \equiv \int_{-1}^{1} \mathrm{~d} y \frac{(1+y)^{2+2 / r}(1-y)}{\left[(1+y)^{1 / r}+(1-y)^{1 / r}\right]^{2 r+2}} \tag{3.22}
\end{equation*}
$$

The contribution from $B_{2}^{(2)}$ can be calculated as follows.
From (3.17) and (3.19), we have

$$
\begin{align*}
& \tilde{\boldsymbol{\Sigma}}_{2}^{(2)}=-2 w_{2} \int_{0}^{\infty} u \mathrm{~d} u \mathrm{e}^{-u} \int_{0}^{\infty} \mathrm{d} \nu \mathrm{e}^{-\nu} \exp \left(w_{1} \sum_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r+1} \frac{u \nu}{\left(u^{s}+\nu^{s}\right)^{r}}\right) \\
& \times(r+1)^{2} \frac{\nu^{2}}{\left(u^{s}+\nu^{s}\right)^{2 r}}\left[\int D \mu_{\alpha} \exp \left(-w_{1} F_{0} \sum_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r-1} \mu_{\alpha}^{2}\right)\right. \\
&\left.\times \sum_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{2 r} \mu_{\alpha}^{2}\right] \tag{3.23}
\end{align*}
$$

since

$$
\begin{equation*}
\int D \mu_{\alpha} \exp \left(-w_{1} F_{0} \sum_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r-1} \mu_{\alpha}^{2}\right) \mu_{\beta}^{2}=\frac{1}{2 w_{1} F_{0}\left(-\mathrm{i} \lambda_{\beta}\right)^{r-1}} \quad n \rightarrow 0 \tag{3.24}
\end{equation*}
$$

We substitute (3.24) into (3.23) and, in order to cancel w_{1} in (3.24), we keep the second term in the expansion (3.20). Therefore we may write $\tilde{\boldsymbol{\Sigma}}_{2}^{(2)}$ as

$$
\begin{gather*}
\tilde{\Sigma}_{2}^{(2)}=-w_{2}\left(\sum_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r+1}\right)^{2} \int_{0}^{\infty} u \mathrm{~d} u \mathrm{e}^{-u} \int_{0}^{\infty} \mathrm{d} \nu \mathrm{e}^{-\nu} \frac{2(r+1)}{r} \frac{u^{s} \nu^{s+2}}{\left(u^{s}+\nu^{s}\right)^{2 r+2}} \\
=w_{2}\left(\sum_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r+1}\right)^{2} C^{(2)}(r) \tag{3.25}
\end{gather*}
$$

where

$$
\begin{equation*}
C^{(2)}(r) \equiv-\int_{-1}^{1} \mathrm{~d} y \frac{(r+1)}{r} \frac{\left(1-y^{2}\right)^{1 / r+1}(1+y)}{\left[(1+y)^{1 / r}+(1-y)^{1 / r}\right]^{2 r+2}} \tag{3.26}
\end{equation*}
$$

The contribution from $B_{2}^{(3)}$ can be calculated as follows.
From (3.24) one can see that
$\sum_{\beta} \int D \mu_{\alpha} \exp \left(-w_{1} F_{0} \sum_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r-1} \mu_{\alpha}^{2}\right)\left(-\mathrm{i} \lambda_{\beta}\right)^{r-1} \mu_{\beta}^{2}=\sum_{\beta} \frac{1}{2 w_{1} F_{0}}=0 \quad n \rightarrow 0$.
Hence $B_{2}^{(3)}$ does not contribute to $\phi_{2}(r)$.
From (2.11), (3.1), (3.21) and (3.26) we have

$$
\frac{\mathrm{d} w_{2}}{\mathrm{~d} l}=(2-\eta) w_{2}-\frac{1}{2} g\left[2+C_{2}(r)\right] w_{2} \equiv \frac{\phi_{2}(r)}{\nu_{p}} w_{2}
$$

or

$$
\begin{equation*}
\phi_{2}(r)=1+\frac{1}{14} \varepsilon C_{2}(r) \tag{3.27}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{2}(r)=\int_{-1}^{1} \mathrm{~d} y\left((1+y)^{1 / r}-\frac{r+1}{r}(1-y)^{1 / r}\right) \frac{(1+y)^{2+1 / r}(1-y)}{\left[(1+y)^{1 / r}+(1-y)^{1 / r}\right]^{2 r+2}} . \tag{3.28}
\end{equation*}
$$

The calculation of $\phi_{3}(r)$ is similar to that of $\phi_{2}(r)$. Here we should expand B_{3} to fourth order in μ_{α}, and keep the proper term in (3.20) to get the correct scaling form $w_{3}\left[\boldsymbol{\Sigma}_{\alpha}\left(-\mathrm{i} \lambda_{\alpha}\right)^{r+1}\right]^{3}$. We obtain

$$
\begin{equation*}
\phi_{3}(r)=1+\frac{1}{14} \varepsilon C_{3}(r) \tag{3.29}
\end{equation*}
$$

where

$$
\begin{align*}
C_{3}(r)=\int_{-1}^{1} \mathrm{~d} y & \frac{(1+y)^{3+1 / r}(1-y)}{\left[(1+y)^{1 / r}+(1-y)^{1 / r}\right]^{3 r+3}} \\
& \quad \times\left((1+y)^{2 / r}-\frac{3(r+1)}{r}(1+y)^{1 / r}(1-y)^{1 / r}+\frac{3(r+1)}{2 r}(1-y)^{2 / r}\right) . \tag{3.30}
\end{align*}
$$

In principle, $\phi_{k}(r)$ for $k>3$ can also be calculated in the same way. Now we check several limits of r.
(i) $r \rightarrow 1$: we obtain $C_{2}(1)=0$ and $C_{3}(1)=-\frac{1}{35}$ which agrees with ϕ_{k} for the linear resistor network [10].
(ii) $r \rightarrow \infty$: we have $\phi_{2}(\infty)=\phi_{3}(\infty)=1$, which is expected [2,15].

Finally, we note that for the limit $r \rightarrow 0$, which corresponds to the exponent of the chemical length [2,11], we obtain $C_{2}(0)=C_{3}(0)=\frac{1}{2}$, which provides strong evidence that there is not a hierarchy of exponents for the chemical length.

In summary, we have calculated the non-linear crossover exponents $\phi_{2}(r)$ and $\phi_{3}(r)$ which provide a useful test for the method of analytic continuation proposed by Harris in calculating the non-linear crossover exponent $\phi(r)$ for the non-linear resistor network.

Acknowledgments

I would like to thank Professor A B Harris for helpful discussions. I also thank the referees for useful comments. I thank the National Science Foundation, mrl programme, for support under grant no DMR 85-19059.

References

[1] Kenkel S W and Straley J P 1982 Phys. Rev. Lett. 49767
[2] Blumenfeld R and Aharony A 1985 J. Phys. A: Math. Gen. 18 L443
[3] de Arcangelis L, Redner S and Coniglio A 1985 Phys. Rev. B 314725
[4] Blumenfeld R, Meir Y, Aharony A and Harris A B 1987 Phys. Rev. B 353524 Blumenfeld R, Meir Y, Harris A B and Aharony A 1986 J. Phys. A: Math. Gen. 19 L791
[5] Park Y, Harris A B and Lubensky T C 1987 Phys. Rev. B 355048
[6] Skal A S and Shklovskii B I 1974 Fiz. Tekh. Poluprovodn. 81582 (Engl. transl. 1975 Sov. Phys.-Semicond. 8 1029)
[7] de Gennes P G 1976 J. Physique Lett. 37 L1
[8] Harris A B, Kim S and Lubensky T C 1984 Phys. Rev. Lett. 53 743; 1985 Phys. Rev. Lett. 1088(E)
[9] Harris A B and Lubensky T C 1984 J. Phys. A: Math. Gen. 17 L609
[10] Harris A B and Lubensky T C 1987 Phys. Rev. B 356964
[11] Harris A B 1987 Phys. Rev. B 355056
[12] Stephen M J 1978 Phys. Rev. B 174444
[13] Rudnick J and Nelson D R 1976 Phys. Rev. B 132208
[14] Harris A B, Lubensky T C, Holcomb W K and Dasgupta C 1975 Phys. Rev. Lett. 35 327, 1397(E)
[15] de Arcangelis L, Coniglio A and Redner S 1985 J. Phys. A: Math. Gen. 18 L805

